
 1

Migrating Fault Trees To Decision Trees For Real Time
Fault Detection On International Space Station

Charles Lee
SAIC

NASA Ames Research Center
Moffet Field, CA. 94035

650-604-6054
clee@mail.arc.nasa.gov

Richard L. Alena

NASA Ames Research Center

Moffet Field, CA. 94035
650-604-0262

Richard.l.alena@nasa.gov

Peter Robinson

QSS
NASA Ames Research Center

Moffet Field, CA. 94035
650-604-3513

probinson@mail.arc.nasa.gov

Abstract—Fault Tree12 Analysis shows the possible causes
of a system malfunction by enumerating the suspect
components and their respective failure modes that may
have induced the problem. Complex systems often use fault
trees to analyze the faults. Fault diagnosis, when error
occurs, is performed by engineers and analysts performing
extensive examination of all data gathered during the
mission. International Space Station (ISS) control center
operates on the data feedback from the system and decisions
are made based on threshold values by using fault trees.
Since those decision-making tasks are safety critical and
must be done promptly, the engineers who manually
analyze the data are facing time challenge. To automate this
process, this paper present an approach that uses decision
trees to capture the contents of fault trees and detect faults
by running the telemetry data through the decision trees in
real time. Decision trees (also called classification trees) are
the binary trees built from data samples and can classify the
objects into different classes. In our case, the decision trees
can classify different fault events or normal events. Given a
set of data samples, decision trees can be built and trained,
and then by running the new data through the trees,
classification and prediction can be made. In this way,
diagnostic knowledge for fault detection and isolation can
be represented as diagnostic rules; we call this tree the
diagnostic decision tree(DDT). By showing the fault path
in decision trees, we also can point out the root cause when
a fault occurs. Since all the procedures and algorithms are
available to build decision trees, the trees built are cost
effective and time effective. Because the diagnostic
decision trees are based on available data and previous
knowledge of subsystem logic, the DDT can also be trained
to predict faults and detect unknown faults. Based on this,
the needs for on-board real time diagnostics can readily be
met. Diagnostic Decision Trees are built based on the fault
trees as static trees that serve as the fundamental diagnostic
trees, and the dynamic DDTs are built over time from
vehicle telemetry data. The dynamic DDT will add the
functionalities of prediction, and will be able to detect
unknown faults. Crew or maintenance engineers can use the

1 U.S. Government work not protected by U.S. copyright.
2 IEEEAC paper #1203, Version 6, Updated Dec 22, 2004

decision tree system without having previous knowledge or
experience about the diagnosed system. To our knowledge,
this is the first paper to propose a solution to build
diagnostics decision trees from fault trees, which convert
the reliability analysis models to diagnostic models. We
show through mapping and ISS examples that the approach
is feasible and effective. We also present future work and
development.

TABLE OF CONTENTS

1. INTRODUCTION ... 1
2. CONVERSION METHOD... 2
3. APPLICATIONS .. 4
4. CONCLUSION... 5
5. FUTURE DEVELOPMENT 5
REFERENCES... 5
BIOGRAPHY .. 5

1. INTRODUCTION

The fault tree concept was introduced by Bell Telephone
Laboratories in 1962 for the U.S. Air Force for use with the
Minuteman system [7]. It was later adopted and extensively
applied by the Boeing Company and is one of the most
widely used methods in system reliability analysis for a long
time [3]. It is a deductive procedure for determining the
various combinations of hardware and software failures and
human errors that could result in the occurrence of specified
undesired events (referred to as top events) at the system
level. As part of the analysis, the minimal cut sets of a fault
tree can be determined [2], and then fault trees can be built.
Individual fault trees can be visualized and drawn. Fault
trees are usually individually built for each part of the
system for each top event. It is hard to have generic
software to traverse fault trees. On the other hand, the
decision trees are matured data structures and it is very easy
to manipulate them in a software program. Using decision
trees to represent fault trees will increase the operability and
decrease response time for system diagnostics, and
furthermore, will make it easier for users to visualize the
root cause of the fault and path from which the fault came.

 2

The high availability of many different tree algorithm
implementations in the computer science field makes using
decision tree to manage the fault trees one of best
approaches. In this paper, we present a method to convert
existing fault trees to decision trees. More general ways of
constructing decision trees are presented. The method is
easy to program and run on a computer since the decision
tree algorithms have many available implementations [4].
This method also provides a good tool for researchers on
simulation and prediction tasks. By using this method, one
can analyze data samples from the past and categorized
them into different classes; abnormal, normal, and fault
events in such a way that future faults can be predicted from
the past. This could be a data mining components with run
time updating processes. Such an artificial intelligent
application is presented in the paper as a form of framework
architecture.

2. CONVERSION METHOD

There are some other attempts to represent fault trees by
other forms; one of them is building diagnostic maps from
fault trees [1]. Decision trees are trees usually built from
data. Let’s look at a fault tree and see how can we map it to
the decision tree. Take a sample fault tree in the form of
following:

Voltage A Over Trip set point 129

Validity 0 (1 = invalid)
3 consecutive readings

Reconfig. deactive 1(0= act ive)

Voltage B <= 10

Validity 0(1 = invalid)

Over Voltage

Figure 1 Over Voltage Event Fault Tree

We have 6 inputs to the tree. The inputs remain the same for
the decision tree. The corresponding decision tree should
have the same functionality in terms of samples inputs and
fault triggers. In the other words, the same inputs to the
fault tree, or to the decision tree will have the same result.
The corresponding tree can be built as in Figure 2. If by
applying the telemetry data one can propagate all the way to
terminal node 6, we know that the system is at an over
voltage fault. The decision tree not only provides the final
result if the system is at fault status, it can also provides the
interim status by looking at where the sample data end up.
To ease the decision tree generation and notation, we give
the signals short names as follows:

Consecutive readings = ct; Voltage A over trip point 129 =
Ua; Validity UaA = UdA; Reconfig deactive = Config;
Voltage B = Ub; Validate Ub = UdB.

UdA=false

Ub<=10

UdB=
0

Ua=0

UdA=true

Config=1 Config=0

Ub>10

UdB=1

1

5

4

2

3

6

0
Ct =3 Ct <3

Figure 2 Decision Tree for Over Voltage

To show a more common case that includes an OR gate in
the fault tree, the other example is shown below:

Frame count

Fail to change in 4 seconds
GNC enabled

SM loss comm =1(=0 not)

3 seconds

GNC Fail
or

Figure 3 GNC Fail Event Fault Tree

Similarly, we represent the signals in short notations. Frame
count = Fc; Fail to change in 4 seconds = Fc4; GNC
enabled = GNCe; SM loss conn = Smloss; 3 second = SM3.
In this case, more balanced data inputs will end up with
more evenly distributed decision trees. In the same way as
we showed earlier, the corresponding decision tree is
presented as follows:

3

2

5 64

1

Fc=t Fc=f

Fc4=t Fc4=f SMloss=0

GNCe=t GNCe=f SM3=fSM3=t

=1

 3

Figure 4 Decision Tree for GNC Fail

We had demonstrated that fault trees can be mapped to
decision trees with examples of the over voltage and GNC
fail fault trees. The convenience use of decision tree use is
that available decision tree software programs can easily
pin point a root cause of an event (including fault event)
by recording the edges in the path of the tree when giving
reports and evaluation of the system status. For more
general purposes and for ease of illustration, we can abstract
the information into a map and construct a decision tree
from this map. The map basically represents the different
events, including fault events, in the n dimension space.
When we deal with decision trees, we call the events
classes. The class could be fault, nominal, or warning etc.
This demonstration shows that the decision tree not only
can be derived from the fault tree but also can be
constructed from data samples, which is very useful in real
time fault detection and prediction.

0 1
S1 S2 S3 S5S4

S6

S7

S8

S9

S10

1

Figure 5 Classes distributions

To map to the decision tree, we use an example to explain
it. We assume faults in the two dimension space for
simplification of visualization. Multiple dimensions will
follow the same rules. In Figure 5, we give an example of
the fault scenarios, the cylinders represent normal, called
Class 1 and cubes represent faults, called Class 2. We will
use cumulative distribution function (cdf) for tree
construction. The cdf is the probability that the variable
takes a value less than or equal to x. That is

 (1)

This can be expressed mathematically for continuous
distribution:

 (2)

For a discrete distribution, the cdf can be expressed as

 (3)

When we construct a decision tree, we have a root, then we
have two branches, further, each of those branches can,
have a maximum of two branches, until no further branches
can be constructed and we reach the bottom of the tree and
we are done. Those procedures could be said in another
way; we are splitting the data until it couldn’t be split any
more. So what we need is information on where to split, and
when do we stop splitting. With the method of accumulated
distribution function, we construct the trees using the
following steps. First, calculate the cdf for each class.
Second, compare the result for each class at all the points.
Third, the largest value will be picked and the maximum
value of x will be the split point. Repeat first to third step
until no more points to split remain. In the example, we
calculate the cdf for each class as a function of each
attribute (see Figure 5), and then pick the split point where
the difference of the two cdf values is maximum.

Figure 6 Calculate split point by using cdf.(1)

We repeatedly split until all samples in a node are of the
same class. In Figure 6, the horizontal axis is the possible
split points iS 51 <=< i corresponding to the x-axis in
Figure 6, and the vertical axis is the value of the cdf for
each class. In Figure 6 1f is the cdf value for class 1

(cylinders) and 2f is the cdf value for class 2 (cubes).
In Figue 5, the vertical axis is the possible split points.

iS 105 <=< i corresponding to the y-axis in Figure 5, and
the horizontal axis is the value of the cdf for each class. In
Figure 6 1f is the cdf value for class 1 (cylinders) and 2f
is the cdf value for class 2 (cubes). The purpose is to find
the point where the distance between 1f and 2f is the
maximum. To calculate the cdf, we used the estimated
function ii Nn / . The total number of samples in class 1 is

6, and in class 2 is 4. 1N = 6 and 2N = 4. As shown in

Figure 5 at split point 1S , we have the f1 value of 1/6, and

2f value of 0. At split point 2S we have the 1f value of

2/6, and a f2 value of 1/4. At split point 3S we have the 1f

value no change, still 2/6 or 1/3, and a 2f value of 2/4 or

 4

1/2. At split point S4 we have the 1f value of 1/2 and a 2f

value of 3/4. At split point 5S we have the 1f value of

5/6 and a 2f value of no change, 3/4.

Similarly in Figure 7 at split 6S the value of 1f is 1/6 and

2f is 0. At split point 7S we

S6

S7

S8

S9

S10

1

0

f2 f1

cdf

Si

Figure 7 Calculate Split Point Using cdf (2)

have the 1f value of 3/6, and a f2 value of 0. With the

same calculations, at split point 8S we have the 1f value

of 4/6 and a f2 value of 0. Again, at split point 9S we have

the 1f value of 5/6 and a 2f value of 1/4. At split point

10S , we have the 1f value of 1 and a 2f value of 2/4.

From Figures 6 and 7, we can see that the split S8 has the
maximum distance (4/6) between 1f and 2f among all

others. Therefore, we pick the first split point as 8S . After

we split the set on 8S , we have two subsets, one of the
subsets has only class 1 in it, and so we don’t need to do the
further split on this subset. But on the other subset, we will
repeat the same calculations on the remaining samples to
find the further split points. The procedures to calculate the
cdf and select the maximum distance between 1f and

2f are the same as above. The constructed tree is shown in
Figure 8.

S8

1

2 1

S10

S3 2

Figure 8 Final Decision Tree

When the real time data comes in, we let them propagate
through the decision tree that we constructed. The faults are
detected and classified when the data samples fall into a
fault class at the terminal node. To illustrate how the fault
happened, we can show the fault mode by tracking the path
that the data went through. Visualization of the path with a
distinctive color or shape will show the user the clear cause
of the fault.

This method not only can apply to the conversion of the
fault trees to decision trees, it can also construct decision
trees from data samples at run time during operation of ISS
over time. By simply selecting a set of data samples from
time to time, we can build decision trees dynamically. In
later time, the built decision trees can be used to compare
the new data to the old data and to predict future faults. The
best use of such trees is to build trees by applying grouped
fault scenarios and then applying real time data to the tree to
compare the pattern to know fault patterns, faults can be
detected when a pattern is matched.

3. APPLICATIONS

From the above illustration, we can migrate the fault
trees to decision trees. We also can build decision trees
from events and telemetry data. The decision trees
converted from fault trees could be used as diagnostic
tools. When fault happened, we can recognize the fault
by running telemetry data through the trees and finding
out where the data stops. Also, the type of fault can be
categorized and its path can be determined by such trees.
Other applications are also possible by utilizing decision
trees. Once we know that the decision tree is very well
suited for data mining tasks, we can apply our trees to a
data mining application targeting at recognizing fault

 5

patterns and do early fault detection and prediction. Data
mining is the process of analyzing data from different
perspectives and summarizing it into useful information.
It allows users to analyze data from many different
dimensions or angles, categorize it, and summarize the
relationships identified. In our case, it is the process of
finding fault patterns. A design model, also we can call it
a framework model, is presented in Figure 9. In the
figure, we can see how the hybrid decision trees, in this
case it a kind of fault decision tree, fit into the
knowledge discovery part of the data mining process [6].
Initially, the trees are built for known fault. For example,
the trees converted from fault trees. Then we have on
going decision trees building on real time data when the
system is running. While we know the fault trees could
not be developed run time and could not be used in such
application, the decision trees are so easy to be fit into
such an application. We can build such a tree that
records fault patterns each time a fault event occurs.
Especially, we record the fault trends patterns so we can

use such trees to recognize a fault in its early stages.

Figure 9 Decision trees in data mining application

4. CONCLUSION

We started from ISS fault tree examples to migrate to
decision trees by presenting a method for converting fault
trees to decision trees. The method shows that the
visualization of root cause of faults is easier and that tree
manipulation becomes more programmatic via available
decision tree programs. The visualization of decision trees
for diagnostics shows a format that humans find
straightforward and easy to understand. For ISS real time
fault diagnostics, the status of the systems could be shown
by running the signals through the trees and watching where
it stops. The other advantage to using decision trees is that
the trees can learn the fault patterns and predict future
faults from the historic data. The learning is done not only
on the static data sets but also can be runtime; through
accumulating the real time data sets, the decision trees can
gain and store faults patterns in the trees and recognize them
when they reoccur. The decision tree plays the role in
knowledge discovery while the fault tree could not.

5. FUTURE DEVELOPMENT

This paper presented the method to migrate the fault trees to
decision trees, which lays a good foundation for using data
mining technique in advanced diagnostic systems. The next
step will naturally fall to a project to implement data mining
software for fault detection, prediction, and analysis. Such
software will use the decision trees as an engine inside of
the diagnostic system application. This engine will be able
to gain knowledge of fault patterns then recognize them
when they reoccur.

REFERENCES

[1] Tariq Assaf and Joanne Bechta Dugan, "Automatic
generation of diagnostic expert systems from fault trees,"
Reliability and Maintainability Symposium, January 2003.

[2] Zhihua Tang and Joanne Bechta Dugan, "Minimal Cut Set
and Sequence Generation for Dynamic Fault Trees,"
Reliability and Maintainability Symposium, January
2004.

 [3] Joanne Bechta Dugan, “Software system analysis using
fault trees,” Chapter 15, Handbook of Software
Reliability Engineering, editor MR. Lyu, IEEE Computer
Society Press, McGraw-Hill Publication 1996.

[4] J. R. Quinlan, Induction of Decision Trees, Machine
Learning, v.1 n.1, p.81-106, 1986

 [5] Ping. Li, Richard. E. Haskell, Darrin. M. Hanna,
“Optimizing Fuzzy Decision Tree by Using Genetic
Algorithms,” Proceedings of the International
Conference on Artificial Intelligence, June, 2003, Las
Vegas, USA

[6] Olaru, C. and L. Wehenkel, Data Mining. IEEE Computer
Applications in Power, 1999. 12(3): p. 19-25.

[7] N. H. Robert and D. F. Haasl, Fault Tree Handbook,
National Technical Information Service, Springfield,
VA, 1981

BIOGRAPHY

Data
Acquisition

Data
 warehouse

Data Pre-
processing Training

data

RT
Database

PatternsVerification

Hybrid
decision

trees

Knowledge Discovery

 6

Charles Lee, employed by SAIC, is the
Technical Lead on Mobile Agents project at
NASA Ames Research Center. He holds a
Ph.D. in systems engineering and computer
science from Oakland University, in
Rochester, Michigan. Completed research
projects includes several systems that have
been successfully deployed at the Mars

Desert Research Station, providing functions for extending
human performance and situational awareness into the
planetary exploration domain targeting future Mars
exploration. These include robust GPS switchboard on-
demand services that provide GPS information with
awareness of loss and the ability to regain wireless network
connections, and a store and forward architecture to
maintain data continuity in the event of network connection
loss. In addition, Dr. Lee developed distributed agents that
serve sensor information through a publish and subscribe
architecture in heterogeneous computer environments, and
a mapping and planning system that provides location and
orientation of mobile rovers and astronauts on topographic
maps for navigation planning and real time monitoring.
Other work includes joint development of custom software
to provide access to avionics data for Advanced
Diagnostics System (ADS) applications, and collection and
organization of International Space Station (ISS) data sets
by fault scenario, along with liaison with ADS developers
and users in the design of data interfaces, user interfaces
and tools relevant to ADS on ISS. He developed Caution
and Warning cube visualization software that handles the
command and data handling events for fault detection.

Richard Alena is a Computer
Engineer and Group Lead for the
Intelligent Mobile Technologies
research and development team in
Computational Sciences Division at
NASA Ames. He led the design and
development of distributed mobile

data systems supporting geological and biological scientific
surveys in the Canadian Arctic and American Desert,
investigating advanced computing solutions for planetary
exploration and coordinating satellite and wireless
networks with wearable computing for multi-agent
simulations. Mr. Alena is the co-lead for the joint ARC-JSC
Advanced Diagnostic Systems for International Space
Station Project, developing model-based diagnostic tools
for space operations. He is also involved with TEAMs and
Livingstone researchers, supporting development of
subsystem interaction models and Caution and Warning
analysis. As a senior computer scientist he was the chief
architect of a flight experiment conducted aboard Shuttle
and Mir using laptop computers, personal digital assistants
and servers in a wireless network for the International
Space Station. He is also the technical lead for the Databus

Analysis Tool for International Space Station on-orbit
diagnosis. Mr. Alena holds a B. S. and M.S. in Electrical
Engineering and Computer Science from the
University of California, Berkeley and holds a U.S. patent
for “Three Electrode Hydroquinone Subcutaneous
Equilibrating Tonometer.” He is the winner of a NASA
Silver Snoopy Award in 2002 and a NASA Space Act Award
for A Comprehensive Toolset for Model-Based Health
Monitoring and Diagnostics. He has also been awarded a
JSC Group Achievement Award in 2000 for his
participation in the Cockpit Avionics Upgrade
Display/Control Application Requirements Team, a NASA
Group Achievement Award in 1998 for his work on the ISS
Phase 1 Program Team and a Space Flight Awareness
Award in 1997.

Peter Robinson earned a bachelor’s degree in computer
science from the University of California at Santa Cruz in
1987. Since 1988 he has worked as a computer scientist at
NASA Ames on a wide variety of domains addressing issues
of integrated quantitative/qualitative modeling for design,
fault diagnosis and control. Currently he is both project
manager, software and modeling lead of the ISStrider
project – a project developing model-based diagnosis
reasoning tools to support the Fault Detection Isolation and
Recovery (FDIR) of the International Space Station (ISS)
Command and Data Handling (C&DH) system. In this
capacity, he has lead the advocacy of the ISStrider project
both at NASA Ames and JSC as well as the design,
software/model development and analysis of the ISStrider
software system. In his sixteen years at NASA Ames he has
applied advanced reasoning methods to diverse set of
research and development applications including: 1) tools
to support design of life-support systems 2) science
instrument control systems for a Mars robotic geologist as
well as a Bioreactor to model earthly-Earth atmosphere
conditions/life-support systems analogs 4) integrated
quantitative/qualitative diagnosis models of the space
shuttle (STS) reaction control systems (RCS) 5) dynamics
modeling of the Deep Space 1 (DS1) spacecraft to support
thruster diagnosis 6) automated grid generation tools to
support computational fluid dynamics (CFD) modeling 7)
advanced 3D visualization methods for aircraft descent and
NASA program management and 8) software formal
methods tool development for tracing dependencies through
automatically generated programs.

 7

